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Abstract. Color continuity is central to cinematography: small shifts
in saturation, contrast, or lightness can break immersion and inflate
grading time. Diffusion-based video generators accelerate ideation but
often exhibit, photometric drift1, undesired frame-to-frame changes in
color statistics even when content is fixed. We quantify drift using eight
appearance descriptors across multiple seeds and shots, observing up to
3% cumulative deviation and 1.3% run-to-run coefficient of variation
(CV)2 within 16 frames. We considered hard constraints such as freeze3

and pin4, but argue they are fragile in practice (ghosting, over-constrained
dynamics, VRAM sensitivity) and not photometric-specific. We instead
propose a tiny inference-only intervention: a four-channel neuron-level
bias5 derived from activation traces6 and injected late in the decoder7.
The bias reduces saturation drift by 74% and contrast by 14%, while
increasing colourfulness and luminosity drift by 19% and 709%. The
design should work with any model; we just tested it on a standard image-
conditioned diffusion pipeline to show it works. We discuss trade-offs
versus manual fixing, hard constraints, and retraining.

Resource website: https://ajiteshbankulaa.github.io/BiasedSDVideoGeneration/

Keywords: Video diffusion · Color continuity · Photometric drift · Cinematog-
raphy

1 Systematic frame-to-frame change in colour/tonal statistics (e.g., saturation, contrast,
lightness) even when scene content is fixed.

2 Standard deviation divided by the mean; here computed per frame across seeds to
quantify run-to-run spread.

3 Lock a layer’s output to its frame-0 value for all subsequent frames.
4 Blend features or pixels toward frame 0 with weight α ∈ [0, 1].
5 A constant vector of four additive offsets applied to selected decoder channels at

inference to nudge photometrics.
6 Per-frame statistics (here, spatial means) of selected neural channels across time.
7 The final stage that projects latent features to image space (e.g., UNet conv_out +

upscaler).
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1 Introduction

1.1 Why continuity of appearance matters

Color is a crucial narrative instrument: it primes expectations, steers attention,
and shows intent in a film, a look that persists across a scene. Production teams
therefore target continuity of appearance stable statistics such as saturation, con-
trast, and lightness—so that editorial cuts feel invisible and emotional beats land
with precision [8, 2]. When continuity slips, audience experience and immersion
are broken; as such, in post production, colorists typically spend many hours
matching shots and building the intended look [7].

1.2 Diffusion video and the continuity gap

Text-to-video diffusion systems now produce striking imagery and are entering
previsualization and idea creation workflows. Yet they are inherently stochastic:
successive frames sampled from the same conditioning signal often wander. This
means that saturation can creep upward, lightness can trend darker, and contrast
can transiently flatten before recovering. This appearance drift8 complicates
downstream color grading and undermines repeatability across runs.

1.3 Problem statement and desiderata

We address two questions: (Q1) How large is photometric drift in typical diffusion
pipelines when the scene content is fixed? (Q2) Can we reduce drift without
retraining and with negligible runtime overhead? For practical adoption, the
solution should be: (i) not dependent on the model; (ii) controllable (expose a
knob like “keep lightness steady”); (iii) composable with standard grading; and
(iv) transparent, showing what is being changed.

1.4 Terminology and definitions (quick reference)

We use the following terms consistently:

– Photometrics / photometric statistics: frame-level numeric descriptors of
color and tone (e.g., saturation, lightness, contrast, colorfulness, hue entropy).

– Photometric (appearance) drift: systematic change of photometrics
across frames with fixed content; we quantify with ∆mt = (mt −m0)/m0.

– Baseline run: the short reference generation used to compute activation
traces and fit a bias.

– Decoder: the last feature-to-image projection stage (e.g., UNet conv_out
and upsampling).

– Activation trace: per-frame summary statistic (spatial mean) of a channel
over time.

8 We use “appearance drift” synonymously with photometric drift; the focus is
color/tonal statistics, not geometry.
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– Neuron-level bias: constant additive offsets applied to selected decoder
channels at inference.

– Freeze / Pin: hard constraints; freeze copies frame-0 activations; pin blends
features or pixels toward frame 0 with weight α.

– CV (coefficient of variation): CV = σ/µ, used per frame across seeds to
quantify run-to-run spread.

– Exposure: average lightness; we use HLS lightness as a proxy.

1.5 Approach and contributions

We propose a minimal intervention: where we use a four-scalar neuron-level bias
from one short baseline run and inject it late in the decoder at inference time.
The bias nudges selected channels whose temporal activity correlates with drift
in target metrics. Our contributions are:

1. Protocol & reference suite for measuring photometric drift using eight
descriptors (Sec. 3).

2. Quantification of frame-wise drift and run-to-run variability with concrete
plots and statistics (Sec. 4).

3. Neuron-level bias that reduces targeted drift with near-zero compute and
no training (Secs. 3–5).

4. Comparisons and trade-offs with manual grading, freeze/pin, and retrain-
ing (Sec. 5).

The design is independent of any particular model; implementation details only
appear in Sec. 3 to demonstrate feasibility.

2 Literature Review

2.1 Colour control in film practice

Color has evolved from photochemical timing to digital intermediate and node-
based grading. Modern workflows mix scene-referred transforms, LUTs, and
targeted corrections. Across decades, the main constant though is maintaining a
consistent appearance across shots to preserve continuity and emotional coherence
[7]. Even small deviations in saturation or exposure can mess up story beats and
increase revision cycles [2]. Further research shows clearly that the control of
color statistics can modulate affect and attention [1].

2.2 Video diffusion: fidelity vs. continuity

There has been rapid progression in video diffusion quality, conditioning methods,
and controllability [9, 3]. Coherence is an active area: synchronized sampling and
better context packing improve content stability across frames [5, 10]. However,
photometric continuity is typically treated qualitatively or delegated to post-
production. Our work focuses precisely on quantifying and controlling these
photometric statistics.
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2.3 Photometric descriptors and measurement

Classical image processing offers interpretable descriptors: RMS contrast9, mean
saturation in HSV/HLS, perceptual colorfulness (Hasler–Süsstrunk)10, sharpness
via Laplacian variance, hue-entropy for palette spread, and percentile spans for
dynamic range. These descriptors are cheap, continuous, and map to colorist
vocabulary, making them useful for diagnosing drift.

2.4 Activation-level interventions

Intervening in neural activations e.g., channel-wise nudges or steering along
concept directions—offers direct control without full fine-tuning [11, 6]. For
diffusion models, inference time hooks are quite attractive: they avoid weight
storage, minimize latency, and preserve most of the model. We adopt this spirit,
targeting late-decoder channels as a practical point for photometric control.

2.5 Positioning relative to alternatives

Manual grading is precise but labor-intensive and must be repeated for each
new sample. Freezing and pinning constraints are simple but can suppress legiti-
mate dynamics or introduce ghosting(faint visual artifacts from prior frames).
Retraining/fine-tuning may internalize continuity but is compute- and data-
heavy and can be brittle across scenes. A tiny inference-time bias-based approach,
though, offers a complementary point in this design space. That could help with
the issues of the other methods.

3 Methods and Data

3.1 Reference data

We curate ten color-rich frames from The Grand Budapest Hotel. Each still is
center-cropped to 500×377 and resized to 1024×576 (16:9) to match a standard
working resolution. For each still we render five 16-frame clips with different
seeds, yielding 35 clips (560 frames) plus the seven originals.

3.2 Photometric descriptors

We compute eight descriptors per frame; all are real-valued, continuous, and
cheap to evaluate:

– Saturation (S): mean of the HSV/HLS saturation channel in [0, 1].
– Luminosity (L): mean of HLS lightness in [0, 1] (proxy for exposure).

9 Root-mean-square (standard deviation) of grayscale luminance.
10 A perceptual measure combining the standard deviations and means of rg = R−G

and yb = 1
2
(R+G)−B; see [4].
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– Contrast (C): RMS contrast on grayscale luminance Y normalized to [0, 1].
– Colourfulness (C): Hasler–Süsstrunk [4].
– Hue entropy (He): entropy of the hue histogram (36 bins), normalized by

log2 36.
– Warmth ratio (Wr): warm-band counts (15◦−35◦) over teal-band (90◦−110◦).
– Sharpness (Sh): variance of the Laplacian of Y .
– Dynamic range (D): percentile span P95(Y )− P5(Y ).

We analyze two types of variability: Drift relative to frame 0, ∆mt = (mt −
m0)/m0, and run-to-run variability, measured as CV per frame across seeds.

3.3 Design: neuron-level bias

Let ac(t) be the spatial mean of decoder channel c at frame t.

(1) Channel selection. Pick K=4 channels with largest temporal variance Vart[ac(t)]
(moving channels are better levers).

(2) Sensitivity fit. Build X ∈ RT×K from their traces and fit, for each target
metric m ∈ {saturation, contrast, colourfulness},

ym = Xβm, ym(t) = ∆mt.

(3) Bias construction. To counter combined drift use

b = −(βsat + βctr + βcol)⊙ σX ,

where σX is the column-wise stdev of X (unit-matching).

(4) Injection. At inference, add b to the selected channels after the final convolu-
tion and before RGB upscaling for all diffusion steps t > 0.

Complexity. One short baseline pass to log ac(t) and metrics; at generation time
add only four scalars per step. No training or stored weights.

3.4 Other Low-level constraints considered: freeze and pin (why we
did not adopt them)

Two straightforward, low-level constraints can be applied to diffusion pipelines:
Freeze copies a target layer’s activations from frame 0 to all subsequent frames.
Pin blends either in feature space (decoder output) or in pixel space toward
frame 0:

outt ← (1− α) · outt + α · frame0 (α ∈ [0, 1]).
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Why these are fragile in practice.

1. Not photometric-specific. Neither freeze nor pin targets saturation, con-
trast, or lightness directly; both indiscriminately damp all variation in the
chosen tensor or pixels towards the starting frame. As a result, they can
stabilize exposure while simultaneously suppressing desirable micro-contrast
or color nuance.

2. Suppress legitimate dynamics. Freezing late-decoder features forces a
stationary appearance even when subtle temporal changes are part of the
intended motion (e.g., specular flicker), producing a “stuck” look.

3. Ghosting and smear. Pixel-space pin blends toward frame 0 regardless
of motion, leading to ghost trails when objects move or when the camera
reframes.

4. VRAM sensitivity. Using the pin method at the decoder often increases
activation lifetimes and copied amounts; on lower end commodity GPUs
this can trigger OOMs or have the downside of a slow offload, which heavily
harms its usability.

5. Global coupling side-effects. Because the intervention is broad, adjusting
α to fix lightness frequently modifies saturation/contrast as collateral changes;
there is no per-metric knob.

Rationale for our choice. These caveats motivated a photometric-aware alter-
native: a tiny neuron-level bias fit from activation traces to target specific drift
metrics. It preserves legitimate dynamics, exposes a controllable knob (Sec. 4–5),
and keeps runtime costs negligible.

4 Results

4.1 How much drift occurs?

Figure 1 reports ∆mt averaged over seeds and stills. Colourfulness rises steadily
(+2.8% by frame 15), indicating increasing chroma spread. Saturation shows
a similar but smaller monotonic increase (+2.1%). Contrast tends to dip in
the first few frames (likely denoising transients) and then recover. Luminosity
trends slightly negative (mild darkening). Hue entropy (not shown) rises ∼ 1.4%,
implying a broader hue distribution.
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Fig. 1. Frame-wise photometric drift (mean of 5 seeds, 10 shots). Positive values
indicate an increase relative to frame 0.

4.2 How variable are different runs?

Run-to-run variability (Fig. 2) is highest in early frames for most metrics (CV
up to 1.3% in colourfulness), then decays as the process stabilizes toward the
conditioned scene. Luminosity generally exhibits lower CV, suggesting exposure
is less seed-sensitive than chroma attributes.
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Fig. 2. Run-to-run variability. Coefficient of variation (CV) per frame across five
seeds (shaded: ±1σ).

4.3 What does the neuron bias change?

Table 1 summarizes absolute drift between frames 0 and 15 for four primary
metrics. The bias reduces saturation by 74% and contrast by 14% relative to
baseline, while increasing colourfulness and the magnitude of luminosity drift.
Qualitatively, clips retain their intent yet look slightly more vivid and darker.

Table 1. Absolute drift at frame 15 (15− 0). ∆ = (Bias − Baseline)/|Baseline|.

Metric Baseline +Bias ∆ (%)

Saturation 0.01559 0.00400 −74
Contrast 0.00230 0.00198 −14
Colourfulness 2.14702 2.54642 +19
Luminosity −0.00055 −0.00445 +709

4.4 Is there a usable control knob?

We sweep the bias scale s ∈ [−1, 1] and measure mean lightness. Figure 3 shows a
smooth, monotonic response, indicating the bias can serve as a practical exposure
knob without retraining.
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Fig. 3. Bias strength vs. mean lightness. A monotonic relationship suggests a
usable control knob.

5 Evaluation

5.1 Comparing against alternatives

Table 2 positions our method against common alternatives. Manual grading is pre-
cise but costly; freeze/pin offers strong continuity at the risk of over-constraining
dynamics or adding ghosting; retraining promises broader improvements but at
significant data/compute cost. Our bias introduces a minimal, composable knob
with small side-effects (e.g., lightness).

Table 2. Qualitative comparison of continuity strategies.

Method Training Runtime Overhead Continuity Strength Typical Side-Effects

Manual grading No Per shot/clip High (post) Time cost, redo per run
Freeze No Low Very high Suppressed dynamics
Pin (pixel/feature) No Low–Med High Ghosting/VRAM usage
Retraining/fine-tune Yes High (train) Potentially high Data/compute cost
Neuron bias (ours) No Very low Medium→High Color/brightness coupling

5.2 Deployment and protocol

Two practical checks for deployment: (i) Seeds/early frames: recompute drift
for new seeds; report distribution of ∆mt at t ∈ {1, 2, 3, 15}. (ii) Channel count
K: test K ∈ {2, 4, 8}; we observed best stability and least coupling at K=4.
(iii) Selection criterion: variance vs. correlation-to-target; variance was more
robust to short probes. (iv) Bias scale: use Fig. 3 to pick an exposure target,
then refit per scene.
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5.3 Practical integration

Compute the bias on a look shot that defines the desired appearance; then reuse
it across takes with different seeds.

6 Discussion

6.1 Why is this important for filmmakers?

The bias-based approach provides a low-cost continuity lever. It is fast, requires
no weight edits, and coexists with grading. This allows directors to stabilize
saturation and contrast early in the pipeline, while preserving flexibility for
creative changes later. Further, the method exposes interpretable diagnostics
(metrics over time) for look matching.

6.2 Failure and mitigation

Because the bias is linear and shared across frames, it may over correct in scenes
with deliberate photometric evolution. Metric coupling (e.g., colourfulness vs.
lightness) can yield darker yet more vivid frames. Mitigations include per-metric
biases, a soft pixel pin, or dialing the scale via the sweep.

6.3 Limitations

Scope and data. Findings are based on ten color-rich frames from a single film
and short 16-frame clips with image-conditioned generation. This emphasizes
appearance statistics under relatively static content. Generalization to text-only
prompts, multi-shot sequences, long takes, or strongly dynamic scenes remains
to be tested.

Measurement validity. All descriptors are computed in display-referred sRGB
with 8-bit conversions (OpenCV HSV/HLS/Lab), not in scene-referred linear
space. Lightness11 and colourfulness12 are convenient but imperfect stand-ins
for perceptual judgments; small gamut/clipping differences or gamma can bias
values. Global frame statistics ignore local regions (e.g., skin tones) and do not
capture temporal frequency artifacts (flicker). Reported percentages can inflate
when the baseline magnitude is near zero (e.g., luminosity’s +709% corresponds
to an absolute change of ≈ 0.0039).

External validity and compute. Results were obtained under specific sampling
schedules (frames, steps, FPS) and commodity-GPU memory settings. Different
schedulers, guidance scales, resolutions, or decode chunking can change drift
profiles and the bias’s effect size.
11 HLS L channel used as an exposure proxy
12 Hasler–Süsstrunk measure
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Human perception and workflow fit. We did not conduct user studies with
colourists. Metric improvements do not guarantee perceived continuity improve-
ments in editorial context; integration with standard color-management (e.g.,
ACES, scene-referred grading) and look-development pipelines is future work.

7 Conclusions and Future Work

We quantified photometric drift in diffusion-generated video and introduced a
minimal, neuron-level bias that suppresses targeted drift with negligible overhead.
The approach is model-agnostic, composable with colour grading, and offers
a practical control knob. Future directions: (i) per-metric biases fitted jointly
to decouple lightness from chroma, (ii) lightweight nonlinear controllers, (iii)
automatic target-setting from a colour reference, and (iv) perceptual validation
with professional colourists.
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Appendix A: Metric Definitions and Implementation Notes

Saturation & Luminosity. OpenCV conversions to HSV/HLS; average S and L
scaled to [0, 1].

Contrast. RMS contrast on luminance: std(Y ).

Colourfulness. Hasler–Süsstrunk [4]; see Sec. 3.

Hue entropy. 36-bin histogram, Laplace-smoothed, entropy normalized by log2 36.

Warmth ratio. Ratio of counts in 15◦−35◦ to 90◦−110◦.

Sharpness. Variance of the Laplacian.

Dynamic range. P95(Y )− P5(Y ).

Drift and CV. Drift ∆mt and CV as defined in Sec. 3.

Appendix B: Bias Computation and Injection
(Pseudo-Algorithm)

Input: baseline clip (frames 0..T−1), per-frame metrics mt, decoder channel
means ac(t).
Select channels: top K by Vart[ac(t)].
Fit sensitivities: build X ∈ RT×K ; fit ym = Xβm for m ∈ {sat, ctr, col}.
Bias: b = −(βsat + βctr + βcol)⊙ σX .
Inject at inference: for steps t > 0, add b to those channels after the final
convolution.
Render: generate the clip with identical settings and a held-out seed.


